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Abstract Shortest path network interdiction is a combinatorial wiation problem on an activity net-
work arising in a number of important security-related a&gilons. It is classically formulated
as a bilevel maximin problem representing an “interdicenmti an “evader”. The evader tries to
move from a source node to the target node along a path of ésedest while the interdictor
attempts to frustrate this motion by cutting edges or nodlbs.interdiction objective is to find
the optimal set of edges to cut given that there is a finiterditéon budget and the interdictor
must move first. We reformulate the interdiction problemdtwchastic evaders by introducing
a model in which the evader follows a Markovian random walidgd by the least-cost path to
the target. This model can represent incomplete knowletigaetahe evader, and the resulting
model is a nonlinear © 1 optimization problem. We then introduce an optimizati@utis-
tic based on betweenness centrality that can rapidly find-figality interdiction solutions by
providing a global view of the network.

Keywords Network Interdiction; Stochastic Optimization; Guidedridam Walk; Betweenness Centrality;
LA-UR-08-06551

1. Introduction

Mathematical modeling of network interdiction originatedhe study of military supply chains and
interdiction of transportation networks [11, 17]. The g is currently studied in different classes
of networks and in a variety of contexts, and finds applicetio countering of nuclear proliferation
programs [19], control of infectious diseases [23], andugiton of terrorist networks [18]. The
underlying networks may represent transportation netsjaak well as social or activity networks.
Recent interest in the problem has been in part due to thattbfesmuggling of nuclear materials
and devices [21]. Interdiction corresponds to the ingialteof special radiation-sensitive detectors
across transportation links.

The problem is often posed in terms of two agents called fititéor” and “evader” where the
evader attempts to minimize some objective function in ttevork,e.g.distance, cost, or risk when
traveling from network locatiors to locationt, while the interdictor attempts to limit success by
removing network nodes or edges. The interdictor has lsmigsources and can thus only remove
a finite set of nodes or edges. In the simplest formulatiomjrkerdictor seeks to identify a set of
edges (or nodes) on the network whose removal maximizesoteof the least-cost path from a
source to a destination node, while the evader seeks to fildraverse the best unimpeded path.
This interdiction problem is known as the “most vital edgés” “most vital nodes”) problem [8]
and it has been shown to be NP-hard [3] and NP-hard to appedgite better than a factor of
2 [6]. Methods for solving network interdiction problems/kancluded exact algorithms for solving
integer programs, such as branch-and-bound, as well asngesition methods to rebuild the net-
work by iteratively adding relevant paths to reduce the sizeoth the underlying network and the
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number of binary decision variables. A more recent approaased on structure-dependent cutting
planes, exploits the relationship between the orderedfsetasion paths and binary interdiction
variables [22].

A common assumption in many studies is that there is perfectvledge of hard-to-compute
network parameters, such as the cost to the evader to teasaredge in terms of resource con-
sumption or probability of detection. However, it is clebat the evader, and, to a lesser extent,
the interdictor, have unreliable and incomplete informatbout the network. These uncertainties
place the interdiction problem within stochastic optinti@a, where one seeks to find those edges
that are vitalon averagelndeed, under uncertainty the evader must be describetblmapilistic
terms. By constructing such probabilistic evader modetsaam expect to develop more robust inter-
diction solutions. The problem of stochastic interdictitas been the focus of a number of recent
studies [19, 1, 5, 16, 24, 13, 9].

Failure to account for evader uncertainty can lead to sulmaptdecisions, namely, solutions
that do not maximize (and even decrease) the evader’s eeaost to reach the target. Consider
for instance the network in Fig. 1. There are four paths frbm $ource to the target: one each
through nodes 2,3 and the one direct patl®,5) with costs 98,8 and 801, respectively. If only
one edge can be removed, the solution in the least-patHfawstilation is to remove edggt, 5)
which increases the path cost fron®&o 801. However if the evader is unable to determine which
path has the least cost and takes any path with equal (oyresprél) probability, then this solution is
not optimal. Interdiction af4,5) actuallydecreaseghe expected cost frons 8.25 to 801, because
it removes the costly path through node 1. The optimal chisicgerdiction of any one of the edges
(0,2), (2,4), (0,3), or (3,4), which increases the expected cost frem8.25 to~ 8.33.

qf.o <5
2_0/@\20
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FIGURE 1. Example network where the shortest path interdictiomfdation produces a suboptimal solution
when interdicting a single edge. Interdicting that ed¢i&) decreases the expected path cost. Interdicting any
one 0f(0,2), (2,4),(0,3), or (3,4) increases the expected path cost.
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In this paper we describe a Markovian network interdicti@mfework which can capture a wide
range of network evader behavior (Sec. 2). We then demaedtia general framework with a
simple model based on evader decision-making mechaniseas 43 Finally we develop efficient
heuristic algorithms for the interdiction problem basedlnstructure of the graph and then present
performance results comparing various heuristic methgds.(5).

2. The interdiction model

Our interdiction formulation is a stochastic generalizatof the max-min shortest path interdiction
problem (termed the “least-cost path” interdiction probjéo be exact) [11, 17, 15]. In the least-cost
path formulation an evader attempts to traverse a netwoekgath from an origis to a destination

t. Let p be some path betweenandt in a graphG(N,A) with the set of nodesl and the set of
weighted edged. Letc(p) be the path cost computed by summing the Gpsbver the edges, j)

of p, and any self-looped edge has zero cBst= 0 . The edge costs are assumed to be given in
the problem and may depend on direction (in the caseGHdtA) is a directed graph). Here “edge
cost” is used interchangeably with “edge weight”.

The network interdiction strategy is represented by anrditdon set# which is a subset of
the edge sef of b (budget). The decision variabtg is set to 1 if edg€i, j) € Z, i.e. (i,]) is
interdicted, and;j; = O otherwise. Interdiction increases the cost of traverging by a constant
Dij > 0. When the value dbj; is very large all paths avoid the interdicted ed¢) (assuming that
there is an alternative path) which effectively removesgitige(i, j) from the graph. One may write
Cij =Gij +rijDij butitis more convenient to u; at all times to denote cost that includes possible
interdiction. This makes the matr a function ofr.

In the shortest path model, the evader only travels on pdtlsvest cost, and is fully aware of
increases in edge costs caused by interdiction decisidns gives the optimization problem

maxmin c(p), 1)
wherec(p) is implicitly a function ofr, andPT is the set of paths fromtot. The above formulation
is for interdiction of edges but of course, a similar problasuald be considered for node interdiction
(by introducing for alli € N node cost®; and decision variables on nodg3

A stochastic version of the interdiction problem can be tmesed by supposing that an evader
may take any path fromtot, according to some probability distribution, rather thamag's choos-
ing a least-cost path. Randomness in the evader path dedsdue to the lack of knowledge of
how the evader travels through the network. It is fundamntaused by his uncertainty about
interdiction decisions or network costs, mistaken cost computations, or possi@n &y intent to
increase unpredictability. Suppose the evader seledigpaith probabilityP(p). His expected cost
of traveling fromstot is then

Elc] = Z P(p)c(p). 2
pePT
The interdiction problem becomes
max % P(p|r)c(p), ®3)
rez pEPT

whereP(p|r) is now the probability of traversing a path given the intetidin setr. The conditional
probability P(p|r) implicitly contains the evader’s strategy. The shortesthptimization problem
(1) is clearly just a special instance of (3) when the expixtas conditioned on traversal of only
least-cost paths.

To compute the expected cdsic], we rewrite it in terms of the edge costs and the number of
visits to each edge. F; is the expected number of visits of ed@ej) by an evader, then

Lemma 1.

E[C]ZD;TP(D)C(D)= > GijFij. (4)

(i,)eA
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By definition  Fj = ¥ pepyi,j)ep P(P), @ndFij can in general be larger than 1 because paths may
revisit (i, j). The equivalency follows as

E[c] = ZTP(p)c(p),

pe
Z P(p) 5 G,
pePT

(i.))ep

Gij ; P(p).
(i,))eA pePT:(i.j)ep

= > GijFj.
(i.]7eA

The expected cog|c| is now expressed through the expected number of visits edaks (thds;
values). The latter quantity may be hard to compute in geéheeause every evader path could in
principle visit edg€i, j), while the number of possible paths can be very large and@vieounded.
Fortunately, one particular class of stochastic modelsrkblachains - gives a closed-form expres-
sion forF;j.

3. Markovian evaders

We model the stochastic evader as a Markov chain that hasiesst the nodes of the network. In
the most general case, the chain is completely described)by distribution of starting nodes,
and (2) a Markovian transition probability matri,. In the next section, we will provide derivations
of M for some realistic applications by examining the decisioaking mechanisms of a rational
evader frustrated by uncertain information. Such an evadées transitions that tend to bring him
closer to his target.

Consider for now the most general case. The motion of theszvagust a Markov chain with an
absorbing state at the target nadén elementM;; of his transition probability matrix is the prob-
ability of motion from node to nodej along edgéi, j). The matrixM must satisfy two conditions
(1) Absorption at: My = 1 andM;; = 0 for all i #£t, and (2) Access tb: from any starting state
i #t there is a positive probability of reaching state a finite number of transitions. Because of
condition (1) the transition matrix of an absorbing Markdaim can be arranged into the following

canonical form .
MR
M_(OJ.

Here the matrixM (n— 1 by n— 1) contains the transition probabilities among transieates. The
matrixR (n— 1 by 1) specifies the probabilities of transition from thegiant states to the absorbing
state.

Similarly, the edge cost matrix for an absorbing Markovigader takes a specific form

_(Cs
C_<ZJ.
Here the matrixC (n—1 byn—1) contains the costs for transition among transient statesmatrix
S (n—1 by 1) specifies the costs for moving to the absorbing statéew (1 byn— 1) are cost for
edges out of the absorbing states - those edges are newasgdvThe elemef; = 0 implies that

there is no cost to remain at the target node
Based on the matrikl one constructs theundamental MatriXN of the chain:

N=(1-M)"?

Theorem 1. Element N of the fundamental matrix gives the expected number o$ ¥sitate |
if starting at state i (Theorem 11.4 in [12].)
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In general the starting state of the evader is given by albligiona over the nodes. For convenience,
the absorbing nodeis excluded frona, which isn— 1-dimensional. The expected number of visits
to (i, j) before absorption atis

Corollary 1.
Fij = [aN]iM;j. (5)

The expected co$i|c] for a Markovian evader can be found by substituting (5) idfo[25],

Theorem 2. .
E[c] = aNdiag [M e+ RST] , (6)

where diag[l\?IéTJrRST} denotes the column vector of the diagonal elements of matrix
MCT +RST.

In a special case where the edge cost is always 1Gj.e= 1, V(i, j) € A E[c] in (6) reduces to the
well-known expression for expected time-to-absorptaixe

The objective in the Markovian network interdiction pratlés to maximizeE[c]. In the interdic-
tion model, edge cost depends on the interdiction variable turn, the transition matrix and the
fundamental matrix depend erioo. Therefore, this results in the nonlinear optimizapooblem

maxaNdiag [I\?I CT+ RST} . (7)
rez

This optimization problem could be termed thimgle Markovian Evader Network Interdictipnob-
lem. The distribution of starting nodes is assumed to bergared independent of the interdiction
strategyr, while theM matrix is assumed to be determined as soon as the graphamedknown.
In numerical computations the most computationally derrappart resides in findingN = a(l —
I\7I)*l, which require Gaussian elimination in general.

The problem in (7) can be generalized for the case of mulépbalers where each evader rep-
resents a threat scenario or an adversarial group. Eackervéten has certain probability® of
occurring(y,, W = 1), as well as a distinctive source distributia!, target node and transition
matrix M K. The generalized objective is a weighted sum of Eq. (6) oNevaders.

4. Evader models

As was noted in the introduction the evader may often be wrtaliletermine correctly the least-cost
path to the target because of incomplete and inaccuratemiaton about the network topology,
interdiction decisions, or costs along alternative paffesnow develop a concrete Markovian model
that incorporates uncertainty in the path of the evaders&iyges of models have analogues in other
contexts. For example, a similar model was developed fatirrgun ad-hoc wireless networks. In
that application the objective is to transmit messagesutijitdhe network with short delivery leg
and balanced load [4].

4.1. The least-cost-guided evader

We suppose that at each nddée evader will consider several paths froto t and select the one
thatappeargto have the lowest cost. Putting this in the content of a Maidkomodel, we defing;

be the least cost path froimo t, with cost denoted bg(p;). Suppose the evader has a destination
and nodgj is any node in the neighborhoodj € G;). The transition probability fromto j is

e/ (c(pi)—Cij—c(p)))

S ee e e Gilp)

8

whereA > 0 is a parameter (see Fig. 2.)
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FIGURE 2. Computation of the transition probabilitié4;. The least-cost path from nodeo the target is
the pathp; (thick red) with costc(p;) = 3. Through nodg the shortest path tois (thin blue) pathp; with cost
Cij +c(pj) =4

The adherence to the least-cost path is determined by taengterd . WhenA — o« the evader
moves deterministically along the least-cost path (orgahd wherA — 0 the motion is perfectly
random. The least-cost path has the highest probabilitghewifference with other paths vanishes
asA — 0. Hence, the model can be called the “least-cost-guidediegta

Notice that althougiMij values in Eq. (8) depend on the cost of least-cost path, wheno this
dependence is a smooth function of path costs. Thus the newufation provides a more desirable
description of evader motion because it avoids the seitgitiy path costs seen in the shortest-path
evader model. The process of computing the probabilitiesives running Dijkstra’s algorithm to
find the distance to the target node from each npdéich givesc(p;).

4.2. The least-risk-guided evader

In some applications the evader may base decisions on thefrisrossing an edge rather than
the cost. In those cases the each edge in the network is adsigvalueyjj for the probability of
successful evasion, instead of a cGgt. The evader attempts to find the path to the tatgatt
offers the greatest probability of evasion which is is jun& product of thos#j; values along the
path.

Let g be the probability of successful evasion on a path congistirthe edgei, j) and then of
the least-risk path fronj to the target. One choice is to assume that an evader woukt$eaedge
(i, j) with probability proportionalto g;j, or more generally, proportional to a positive powengf

o\ A
Mij O (qi) , (9)

[E3

whereA > 0 is a parameteq;. = max; gjj is the probability of evasion if the least-risk path from
to the target is followed (the constant of proportionalgyound fromy ; Mijj = 1.)
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4.3. The non-retreating evader

A simple variant the least-cost-guided model is the noreeging evader. In this model it is assumed
that an evader always moves to nodes that are closer to thet tewde than the current node. To
represent this model assume that there is zero probakfiliyotion through(i, j) if nodei is at least
as close to the target as nogeamely,c(pi) < c(p;), wherec(pi) andc(p;) are the smallest costs
of paths to the target from nodeand j, respectively, computed by summing the edge weights.
An interesting effect of this assumption is that the evadader would never cross a node or
an edge twice. Consequently the set of nodes becomes alpantdered set and as a result, there
exists a relabeling of the nodes such thatdf p;) > c(p;) thena(i) > a(j). A simple (non-unique)
procedure is to label the target nadas 0 @ (t) = 0) and then rank the nodes in the order of their
distance (cost) along least-cost path,tbreaking ties arbitrarily. Computationally, this is therse
as the order the nodes are reached by a shortest path (Bkstigorithm starting dt The transition
probability becomes

o Mij, c(pi) >c(pj),
0, c(p)<c(pj).

In this case all paths must reach the target after at fiNjst 1 steps, wheréN| is the number
nodes inG, and henc&! becomes nilpotent of powéN| — 1. Moreover, by labeling the nodes up
in order of increasing cosM can be written as a lower-triangular matrix with zero diagjofor
example, if the evader traverses a 3 grid with the target at one corner then one possiblgives
the matrix

Or kPO
= O O

0

0 0
005050 O
00 005050

The special matrix structure facilitates an order-of magie speedup in the computation of Eq. 6.
For a generaM, computinga(l — M)~ involves Gaussian elimination at a cost oK /3 opera-
tions. For a nilpotent lower-triangul8f the cost falls ta(|N|?) since we can use backward-forward
substitutions instead of Gaussian elimination. The cosbafputing the objective function Eq. (6)
is also expected to drop ©O(|N|?) despite the need to reorder the ma@ixwvhen the nodes are
relabeled.

5. Solving the Markovian interdiction problem

The challenge of network interdiction consists of deveatggioth realistic models and tractable algo-
rithms. The Markovian evader model adds realism but doesedoice the computational complexity
of finding good interdiction solutions. Indeed it is cleaatthe Markovian model is computationally
hard because in the limit &f — o, the model becomes the least-cost interdiction problenchvisi
NP-Hard [2, 3] and also hard to approximate [6]. Therefdnis,section discusses solution heuristics
based on network structure.

A common approach to solving many combinatorial optimaatproblems is based on local,
or neighborhood, search algorithms such as simulated &ngga0]. But those general-purpose
local search algorithms do not scale well to larger problem8nd poor solutions. The solution
space may be exponential in the budget so any iterative wepment process of local search can
only explore a very small fraction of solutions in a polynamaumber of steps. It follows that
high-quality solutions can only come from more specialigelyers that exploit the structure of the
interdiction problem. We explore algorithms based on nagKunctions that rank edges according
to global information about graph structure.
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5.1. Betweenness centrality heuristic

The most successful ranking function we found is derivethftbe shortest-path betweenness cen-
trality. The shortest-path betweenness centrality of gieésithe fraction of least-cost paths between
all pairs of nodes in a network that cross the edge [10]. Thetrimidentifies those edges that are
critical to connectivity within a network, such as bridgeged that joins two graph components,
because they participate in a large number of least-colss fiaking nodes on a network,

We constructed an heuristic based on shortest-path behesgrentrality by considering only
paths between the sourcasind the target of the evader. Recall that; is the probability that the
evader would start at node Let g 2 be the number of least-cost paths between nedesl the
target node in the graph with interdiction se®. Similarly, letos; »(e) be the number of those paths
that pass through edge Therefore, we define the source-weighted centrality obedgith respect

tot as the sum
Ost.(€)

oo = 3 (10)
st£seV Ost,2

Notice that this quantity needs to be re-computed duringw@ti@n of an interdiction problem: as
the interdiction setZ is increased, the costs of the edges change and so are thedstpgaths. An
algorithm for calculating a metric of this kind for ale A in O(|A] + |N|log|N|) time is found in
Ref. [7]. In the case of multiple evaders, the heuristic impated for each evader and weighted
based ow®).

5.2. Algorithms

We use the betweenness heurislig(e) to rank the edges in the network given the interdiction
setZ. This heuristic leads to a simple algorithm, termed Betwess (Alg. 1), that performs a
sequential selection of edges. The betweenness algostfastisince it does not evaluate the objec-

Algorithm 1 Betweenness algorithm using global heuristifor budgetB

X — D

while B> 0do

R« # U {argmax.a._5Hz(e)}, resolving ties arbitrarily.
B+~B-1

Output (%)

tive function but only has to initially compute the rankinguristic and then re-evaluate it after the
interdicted edge is chosen. The heuristic is calBaines: once for each of the budgeted edges.
For comparison we also use a more computational expenseglgralgorithm (Alg. 2) that con-
structs the interdiction se® incrementally. At each of thB steps, the greedy algorithm computes
A4 (e), the increase in the objective function due to addition @fessand then selects the best edge.

Algorithm 2 Greedy algorithm for the construction of the interdictie4 with budgetB
X — 2
while B > 0 do
forall ec Ado
Dy (€) :=h(ZU{e})~h(2)
X <+ ZU{argmaxpDz(e)}, resolving ties arbitrarily.
B+~B-1
Output (%)
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5.3. Performance results

We now demonstrate the performance of the Greedy and Behgssralgorithms on a sample net-
work interdiction problem and show the effect of varying taadomness parametér We used a
network which consists of a 2010 grid of directed edges with 10 added shortcuts betweeatoran
pairs of nodes for a total of 420 edges. Weights were assignedch edge by choosing uniformly
at random from the interval [0.5, 1.5]. We selected 2 distiagyets at random (i.e. 2 evaders) each
with 5 source locations.

The motion of the evader followed the least-cost-guided ehdd this model, the effect of the
parameteA on the expected cost for the evader (before interdictiondidinear, as shown in Fig. 3.
At low values ofA the motion is random and the cost is the highestAAs increased the evader
follows paths that are closer to the optimal path and the desteases continuously toward the
minimum achievable at large. The transition between the cost of random motion and thienabt
cost occurs rapidly over a small rangefoivhere the most diverse behavior is found. This transition
in behavior was observed in other random and structurechgrapd real-world networks that we
examined and is a feature of the nonlinear dependence ofthgpobabilities from Eq. (8).

30

250
200
8150
100}

50r

0 L L L L L L L
104 103 102 101 1P 10t 107 103 10t
A

FIGURE 3. The expected cost of reaching the target from the souremetion of the parametex for an
example network. For large values dfthe model chooses only the shortest path and the expectédscos
lowest. AsA decreases the cost increases as the paths become more r&oddrs: O the paths are completely
random and the cost is at the maximum. The expected costaslatdd by Eq. (6) with the evader modél
given by Eq. (8). The network is a 2010 directed grid with 10 randomly added shortcut edges amdkityet
and source are chosen randomly. Each of the edges have svefgigen uniformly from [0.5,1.5]. The marked
points will be used in performance evaluations, presemtédg. 4.

Fig. 4 shows characteristic performance results for batiGheedy and Betweenness algorithms
for variousA. The performance is measured in terms of the expected ogest gy Eq. (6). Inter-
diction of an edge causes the weight of the edge to increasdikgd valueD;j;. We set the added
increase to be half the diameter of the network which in thseasDj; = 4.5.
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Gredaly |
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0 50 100 150 200 250 300 350 400 450
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FIGURE 4. Comparison of the Greedy (2) and Betweenness (1) algasitior given budgets on the sample
grid network described in Fig. 3. Four different valuesiofire shown corresponding to different levels of
randomness in the evader path selection. When the randerohtse evader is low (high) the Betweenness
algorithm performs very well compared to the higher comportel cost Greedy algorithm. As the randomness
increases the algorithms’ performance diverges after sergll budgets - demonstrating that the Betweenness
heuristic is no longer effective. At low values af the evader motion is random and no algorithm will be
effective. The convergence of the algorithms at large btsdgecurs because we do not allow an edge to be
interdicted more than once and at that budget every edge igriph is interdicted and the costs are the same.

For small budgets the Betweenness algorithm and Greedyithlgoproduce comparable results
as measured by the increase in cost forAallalues. The Betweenness algorithm is considerably
cheaper in computational cost. As the budget is increaseBetweenness heuristic performs very
well for largerA. But for smallerA, as the evader randomness increases, the algorithm paricem
difference diverges indicating that the Betweenness btaiiis no longer effective. At very low
values ofA the evader motion is random and no algorithm is expected &dfbetive.

A particularly interesting phenomenon is the non-monatityiof the expected cost. Namely, for
some lowA values the expected cdsfc) sometimes actually decreases after the interdiction set is
enlarged. This effect was anticipated by the example in Fand it occurs because the behavior of
the randomizing evader is fundamentally different from bledavior of the max-min evader. If we
relax the budget constraiiZ| = B to |#| < B, the objective will be nondecreasing in the Greedy
algorithm.

Other realizations of 1@ 10 grid networks produce similar results and are not showa.Hlga
addition to this example we have explored the performandbdefalgorithms on other networks
including real-world of transportation networks, such las YWashington DC transportation transit
time network and the Rome city road network [14]. The compartecost of the Greedy algorithm
becomes prohibitive in these and other urban, national atetnational transportation systems.
Those networks have $0- 10’ edges, depending on the spatial resolution. The Greedyithilgo
running time scales a®(|A||N|®) for the least-cost-guided evader model, The Betweenngss al
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rithm remains feasible even on very large instances bedgisanning time scales a®(|A| +
IN|log|NJ).

6. Conclusions and outlook

Practical instances of network interdiction must invaljadddress the uncertainty in the network
structure and evader behavior. Such behavior can be modsiad the proposed Markov chain
approach, which achieves increased realism while renaniialytically penetrable. To summarize,
the main contribution of this work are:

e a demonstration of the fundamental advantages of stochastilels over least-cost models,
e a stochastic model of the evader motion based on a Markoviged random walk, and
e a scalable interdiction algorithm based on a specializéadmnness centrality function.

Future research must address both computational and mgddiallenges in stochastic network
interdiction. Current algorithms are effective in the cagdeere the evader motion is partially pre-
dictable. It is not known whether more specialized hewsstian be more successful in the case of
highly-stochastic adversaries. In the current model tinel@anness comes only from information
constraints. In some problems computational constraimtbe evader also play a role in determin-
ing his motion. Models that account for both kinds of corisggromise further gains in realism
and would expand the range of applications where netwoekdinttion could be used.
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